

Really Cross-Platform
Python Development

PYCONFR 2023

Pascal Chambon, Freelance, Witness Angel Project

ONE DREAM
 Single components codebase

 Windows + Linux + Mac +
RaspberryPi + iOS + Android

 Multi-architecture (x64+arm64)

Why we need it so much

 Witness Angel: tiny collective

 We develop “flights recorders“ for humans

 Use cases: harassment, abuse, aggression...

 Focus: Judicial Truth & Privacy

 OPPOSITE of Spy-Cams & Videosurveillance

 Neutral “Key Guardians“ to protect recordings

Witness Angel Ecosystem

Local Key Factory

W.A Authenticator 2

W.A Authenticator 1

W.A Gateway

W.A Trustee Server

DB

Witness Angel
Recorder Device

I choose you... PYTHON

Python is a *cross-platform*, interpreted,
object-oriented programming language

 Good for prototyping

 Good for webservices

 Good for cryptography

 Good for interoperability

 Good for… smartphones?

Let’s see if/how

we can do it!

The Basics

Of Interoperability

STEP 1 - Language

 We’ll focus on CPython

 Lots of other implementations exist
– PyPy, IronPython, Jython, GraalPython, Micropython…
– Aligned with different CPython reference versions
– Main roadblocks: C/C++ extension modules

 Usually, across different implementations,
Python features behave just the same
– Classes, metaclasses, properties, decorators, context

managers, annotations, exceptions, comprehensions...

STEP 2 - Filesystem

Most blatant difference between Posix and Win32

Nope Nice

Folder + “/” + File Module pathlib, else os.path

“/tmp”, “C:\Windows\temp” Module tempfile

str(path).lower() Respect case sensitivity

os.chown(), os.chmod()
unconditionally

Conditionally use os
and pywin32 functions

“COM”, “NULL”, “:”, “;”, “/”... Avoid reserved characters and
words in file/folder paths

A lib used urllib.parse.urljoin() for filepaths

Like… seriously.

Story Time

Kivy-ios has “com/” folder in its Git sources….

Unlucky

Story Time

STEP 2 - Filesystem

 Lots of other little things to worry about…

 Newlines: LF (posix) vs CRLF (win32)
– Glory to default "Universal Newlines" open() mode
– Write LF newlines by default

 Encodings: UTF8 all the way
– Thou shallt not open("readme.txt").read()

– PYTHONUTF8 environment variable to the rescue

STEP 3 – OS-Specific syscalls

System calls, signals, file descriptors...

Nope Nice

os.fork() Module multiprocessing

fcntl, ioctl lockfile, RSFile...
(shameless plug)

SIGCHLD, SIGPIPE, SIGKILL,
SIGUSR*, SIGBREAK SIGINT, SIGTERM

os.getuid(), os.getgid(),
os.startfile() unconditionally

Conditionally use os
or pywin32 functions

STEP 4 – Compiled extensions

 Compiled code depends on everything :
– OS, hardware architecture, version of glibc/msvc runtime,

debug mode or not, other .so/.dll libs, etc.

 Best case : python binary "wheels" exist
somewhere for your target OS

 Worst case : compiling under Windows
– Must have the proper Visual Studio version
– "unable to find vcvarsall.bat"
– "Cannot open include file: lber.h" (e.g. python-ldap)

OK, so now our
algorithms and
basic I/O work

UI & MEDIA
Graphics, Audio, Video

STEP 5 – GUI Toolkit

 Plenty of them for Python
– Tkinter, WxPython, PyQt/PySide2, PyGObject...

 BUT... they only support "Desktop" systems

 A few pioneers exist nonetheless...

STEP 5 – GUI Toolkit

 Beeware (OS-native widgets)
– Perspectives were unclear in 2020
– Now doing steady progress on iOS/Android
– Still small documentation and community feedback

 pyqtdeploy (PyQt widgets)
– Has iOS and Android targets
– Few tutorials
– Very limited community feedback

Doubts in front of
the mountain...

Meet Kivy!

Kivy Principles

 Cross-platform
– Windows/Linux/Mac/RaspberryPi/iOS/Android...

 Widgets based on OpenGL
– 3D-enabled (but no Accessibility yet)
– Video/audio added via SDL2/GStreamer

 Access to native mobile APIs
– Via Pyjnius for Android, and Pyobjus for iOS

 Access to C/C++ libs on mobile
– Via Android NDK, and Apple Xcode

A few liters of
sweat later…

Time to distribute!

STEP 6 – Packaging

Lots of steps to "freeze" a Python program

 Bundle app's .pyc files

 Include pip-installed packages

 Include a python interpreter with its stdlib?

 Installable? Single-file? Self-extracted at
runtime? Optimized? Compiled to binary?

Packaging for Desktop

 Lots of great options: Pyoxidize, Pyinstaller,
cx_freeze, Briefcase, Nuitka...

 Plus some OS-specific: Py2exe, Py2app...

 Kivy provides helper hooks for Pyinstaller!

 Pyinstaller runtime workflow:
– Run native "bootloader"
– Launch Python interpreter
– Load python modules (via ImportHooks)

Packaging for Desktop

Pyinstaller steps (Windows/Linux/Mac)

1) $ Pyinstaller [--onefile] myscript.py

2) Tweak 'myscript.spec' file

3) $ Pyinstaller myscript.spec

4) Check the resulting folder/file

Packaging for Desktop

Example spec file

als = Analysis(['minimal.py'],
 pathex=['/Developer/pylibs/'],
 Binaries=[...],
 Datas=[...],
 Hiddenimports=[...],
 runtime_hooks=[...])

pyz = PYZ(als.pure, als.zipped_data)

exe = EXE(pyz, ...)

coll = COLLECT(...)

Packaging for Desktop

Hints

 Gotta help Pyinstaller find some dependencies

 For compatibility, use oldest OS possible

 Beware of dependencies to system DLLs
– Use the cleanest environment/VM possible
– E.g. kivy-sdk-packager environments

 Antivirus software might dislike the magic of
auto-extracted bundles

Packaging for Desktop

Some fun with Mac Silicon M1

 Architecture : not x64 but arm64

 Gotta install Rosetta2 for compatibility

 Gotta install two Homebrew environments

 Handy tools to survive the architecture mix
– "lipo -info <executable>" to check a binary
– "arch -x86_64/-arm64 <executable>" to force a mode
– AppStore widgets to know which arch is running

OK, so in the end, we got:

- 1 ELF x64 executable for Linux

- 1 PE x64 executable for Windows

- 1 MACH-O x64+arm64 executable for Mac

Are we there yet?

Packaging for Desktop

Packaging for Desktop

Nope. Gotta sign executables for distribution

 Linux: no need, and don't even try

 Windows: optional ; standard SignTool will do

 Mac: now mandatory, fortunately Pyinstaller
can help (with –codesign-identity)

From then on, any usual distribution channel
(Installer, OS Store…) can be used.

Packaging for Desktop

Some more fun, with macOS Gatekeeper

 Gotta decide between exe, .app, .dmg, .pkg

 Gotta sign all levels of the package

 Gotta notarize (with altool) all components

 Better staple (with stapler) the "top package"
– This helps app launch without Internet access

RASPBERRY PI

Raspberry Pi Peculiarities

 Different architectures
– ARM v6 and v7 (32 bits), v8 (64 bits)
– Official repos target ARM v6 for retrocompatibility

 Raspberry Pi OS ~= Linux
– Pi Zero and its 512MB Ram are sluggish
– Beware, 2 different camera stacks, mmal vs libcamera

 We configure+image it via Ansible

 World shortage of Raspberry Pis for now...

Smartphone Time!
Porting to Android and iOS

Mobile Operating Systems

A disconcerting context for “desktopers”

 Built-in sandboxing and permissions

 Some unusual technical limitations

 Additional limitations enforced by app stores

 Constant changes in APIs/Toolchains

 Simulators often use a different architecture

Running Python on Mobile

Principles

 A native bootloader initializes the process

 It spawns a cross-compiled Python interpreter

 Stdlib and app files are loaded from storage

 Java/Objective-C bridges to access devices

ANDROID

Android Peculiarities

 Multiprocessing still works
– In Python, communicate e.g. via OSC protocol

 Normal permissions requested at install time
– E.g. accessing network, bluetooth...

 Dangerous permissions requested at runtime
– E.g. accessing shared folders, camera, location...

 Changes in GooglePlay packaging format
– Previously “APKs”, now “Android App Bundles”

Porting to Android

 Check kivy.platform == "android"

 Use “android” module for permissions

 Use Plyer (wraps Pyjnius) for sensor access

 App booting could be a bit long

 Stdout will go to Android “logcat”

 Check files location with “adb shell”

Packaging for Android

Buildozer is all you need!

 Builds your package
– Buildozer relies on Python-for-android toolchain
– It installs/runs compilers (i.e. Gradle) for you
– It relies on “recipes“ to compile complex Python packages
– See buildozer.spec example in our repositories

 Deploys test app on ADB-connected device

 Signs and bundles app for production

Packaging for Android

Buildozer in practice

1) $ buildozer init # Create buildozer.spec

2) Tweak buildozer.spec (script, logo, perms...)

3) $ buildozer android debug # Build for debug

4) Plug your phone and setup ADB debugging

5) $ buildozer android deploy run logcat # Run

6) $ buildozer android release # Build for prod

Packaging for Android

Distributing your app on PlayStore

 You need a Google developer account
– One-time 25$ fee on enrollment

 You setup your Google Play Console account

 You upload/request signing keys

 You checkup app in closed/open beta tests

 You schedule app for verification and release

iOS

iOS Peculiarities

 Permissions are requested at install time only
– No shared folder, expose public app folder instead

 Fork() is blocked on non-jailbroken devices
– You’re limited to threads

 Dynamic libraries are disallowed by AppStore
– BIG problem e.g. with Pycryptodome

 Interpreters are theoretically forbidden too
– E.g. JVM… let’s be discrete for Python

Porting to iOS

 Check kivy.platform == "ios"

 Reuse Plyer (wraps Pyobjus) for sensor access

 App booting could be a bit long, still

 Export device logs via Xcode
– For realtime logs : AppleConfigurator2, iTools, iOSLogInfo...

 Export “Package Contents” via Xcode
– Useful to check the files pushed to app Sandbox

Packaging for iOS

 Buildozer is (imho) not operational

 Install Homebrew dependencies, and kivy-ios

 Use “toolchain” CLI
– Cross-compile Kivy and dependencies with ”recipes”
– This turns dynamic libs (.so) into static libs (.a)
– Generate a Python-enabled Xcode project

 From then on, it’s a “normal” Xcode project
– Full of settings, simulators, deployers etc.

Packaging for iOS

Distributing your app on AppStore

 You need an Apple Developer subscription
– 99$ per year, darn...

 You setup your AppStore account and keys

 You upload app via Xcode

 You checkup app in beta tests (with TestFlight)

 You schedule app for verification and release

Packaging for iOS

Hints

 Apple validation is picky
– Remove unwanted dynlibs from Xcode project
– Explain why Kivy contains camera-access code

 TestFlight looks disruptive for OS
– Friend lost all Instagram accounts when installing it

BONUS
PLATFORMS

Micropython

A Python implementation for microcontrollers

 Like CPython3.4, with backported features

 Runs in hardware-constrained environments

 Subset of the stdlib, with specific modules
– Bluetooth, cryptolib, network…

 Lots of CPython incompatibilities!
– Multiple inheritance, module loading e

Micropython-ready Boards

Webassembly
Python in Browser, an old fantasy…
PyJS, Brython, Skulpt, Transcrypt...

 WASM, a new language-agnostic bytecode
– Replacement for PNaCl, asm.js...

 Python3.11 documents support for WASM
– On Emscripten SDK, inside browser
– On WASI SDK, outside browser
– See PyScript and Pyodide projects for quick starts

 Works quite fine (see FOSDEM talks)
– Still some rough edges (app size, garbage collector...)

Wisdom Gained

 Really Cross-platform Python can be very
complex, plan lots of debugging time

 Mobile ecosystem is risky
– Because of small dev communities
– Because of Google and Apple monopolies

 But you CAN have a single codebase

 Was it worth if for W.A? Yes**1000

Thanks for your attention!

 Feedbacks & contributions are welcome

https://github.com/WitnessAngel/

 Website & Social Network

https://witnessangel.com
https://www.instagram.com/witnessangel_fr/

 Any questions?

https://github.com/WitnessAngel/
https://witnessangel.com/
https://www.instagram.com/witnessangel_fr/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55

