
Borland Style Graphics

for Dev C++)

Mr. Dave Clausen

La Cañada High School

Mr. Dave Clausen 2

The Text Screen

 The text screen contains 25 lines with a

capacity of holding 80 columns of textual

characters.

 80 X 25 = 2,000 positions

 But there are actually over 2,000 positions on

a display screen.

 The screen consists of pixels (picture

elements) that it uses to represent the textual

characters and symbols.

Mr. Dave Clausen 3

Graphics Setup
 Here are the steps that you need to follow

to use “Borland Style Graphics” source
code in Dev C++:

1. Tell the compiler that graphics commands
will be used.

2. Initialize the Graphics Screen

3. Close the graphics screen after you have
finished drawing your graphics.

Mr. Dave Clausen 4

Graphics Setup 2
 1) To tell the compiler that graphics

commands will be used, include the

preprocessor directive:

#include <graphics.h>

Mr. Dave Clausen 5

Graphics Setup 3
• 2) To initialize the graphics screen

initwindow(640,480);

After you are finished drawing, you need to use the

while(!kbhit()); command to leave the picture on

the screen, or use cin.get();

The last choice requires: #include <iostream.h>

• 5) Then close the graphics screen, using:

closegraph();

Mr. Dave Clausen 6

Fundamentals

of

Graphics

 The Graphics Screen.

 Color Options.

 Graphics Mode.

 Drawing Lines

 Line Style

 Clearing the Screen.

 Plotting Points.

Mr. Dave Clausen 7

 If you have a VGA graphics card or better

in your computer, then the graphics screen

has 640 pixels across and 480 pixels

down.

 640 X 480 = 307,200 pixels

 The upper left corner is position (0, 0)

 The lower right corner is position

(639, 479)

• Remember, the computer starts counting with

zero.

The Graphics Screen

Mr. Dave Clausen 8

The Graphics Screen

Dimensions

(0, 0) (639, 0)

(0, 479) (639, 479)

Mr. Dave Clausen 9

 You can select the color of the background.

 This is done before drawing anything in the
foreground (otherwise your drawing will
disappear.)

 To select the background color use the
command.

 setbkcolor(number);
 Where (number) is a numeric constant from 0

through 15, or the symbolic constant that represents
the color.

Background

Color Options

Mr. Dave Clausen 10

Color Options

 You select a foreground or “drawing” color by

using the following command:

setcolor(number);

• Where (number) is a numeric constant from 0

through 15, or the symbolic constant that

represents the color.

Mr. Dave Clausen 11

Color Names

Here are the color numbers and names:

0 = BLACK

1 = BLUE

2 = GREEN

3 = CYAN

4 = RED

5 = MAGENTA

6 = BROWN

7 = LIGHTGRAY

8 = DARKGRAY

9 = LIGHTBLUE

10 = LIGHTGREEN

11 = LIGHTCYAN

12 = LIGHTRED

13 = LIGHTMAGENTA

14 = YELLOW

15 = WHITE

Mr. Dave Clausen 12

Drawing Lines

 The Current Pointer.

The current pointer is an invisible pointer

that keeps track of the current pixel

position. It is the equivalent of the visible

cursor in text mode.

Mr. Dave Clausen 13

 To move the pointer to a location on the
graph without drawing anything, use the
command:

 moveto (X,Y);
 This is like PenUp (PU) in LOGO

 To draw lines from the current pointer’s
position to another point on the graph, use
the command:

 lineto (X,Y);

 This is like PenDown (PD) in LOGO or SetXY (x, y)

grtmplte.cpp

Drawing Lines 2

demograph.dev

Mr. Dave Clausen 14

Graphics Figures

•Lines

•Rectangles

•Circles

•Arcs

•Ellipses

•Points

Mr. Dave Clausen 15

Lines, The Easy Way

 Instead of using the commands: moveto

and lineto, we can draw a line using one

command:

line(x1, y1, x2, y2);

 The points (x1, y1) describe the beginning

of the line, while (x2, y2) describes the

endpoint of the line.

 The numbers x1, y1, x2, y2 are integers.

Mr. Dave Clausen 16

Rectangles

Rectangles can be drawn in different ways

using lineto, moveto, moverel, and linerel.

But an easier and faster way is using the

Rectangle procedure which draws a rectangle

in the default color and line style with the

upper left at X1, Y1 and lower right X2, Y2.

rectangle (x1, y1, x2, y2);

Mr. Dave Clausen 17

Circles

Circles can be drawn using the circle

procedure.

This draws a circle in the default color and

line style with center at X, Y, radius in the X

direction of Xradius, and corresponding Y

radius.

circle (x, y, radius);

Mr. Dave Clausen 18

Arcs

This procedure draws a circular arc in the

default color and line style based upon a circle

with center X, Y and given X radius.

The arc begins at an angle of StartAngle and

follows the circle to EndAngle. The angles are

measured in degrees from 0 to 360 counter-

clockwise where 0 degrees is directly right.

arc (x, y, startangle, endangle, radius);

Mr. Dave Clausen 19

Visualizing Arcs

Starting & Ending

Angles

0

90

180

270

Starting AngleEnding Angle

Mr. Dave Clausen 20

Ellipses
Draws an elliptical arc in the default color and

line style based upon an ellipse with center X,

Y and given radii.

The arc begins at an angle to Start Angle and

follows the ellipse to End Angle. The angles

are measured in degrees from 0 to 360 counter-

clockwise where 0 degrees is directly right.

ellipse (x, y, startangle , endangle, x_radius, y_radius);

Mr. Dave Clausen 21

Plotting Points
 The Maximum value for X can be

found using:

getmaxx()

 The Maximum value for Y can be found

using:

getmaxy()

 To Plot a point:

putpixel (x_value, y_value, color);

For example: putpixel (100, 100, WHITE);

Mr. Dave Clausen 22

Sample Program

 Let’s look at a program with a line,

rectangle, circle, arc, ellipse, and a point.

Objects.cpp

Mr. Dave Clausen 23

Line Style

 Setting the line style.

All lines have a default line mode, but

Turbo C++ allows the user to specify three

characteristics of a line:

style, pattern, and thickness.

 Use the command:

setlinestyle (style, pattern, thickness);

Mr. Dave Clausen 24

Line Style

and

Thickness Names

Here are the names of the line styles and

thickness:

Line Style Thickness

SOLID_LINE NORM_WIDTH

DOTTED_LINE

CENTER_LINE THICK_WIDTH

DASHED_LINE

USERBIT_LINE

Mr. Dave Clausen 25

Line Style Patterns

 The names of the line patterns are:

SOLID_LINE = 0

DOTTED_LINE = 1

CENTER_LINE = 2

DASHED_LINE = 3

Mr. Dave Clausen 26

Filling Patterns

•Selecting Pattern and Color

•Filling Regions

•Getting a Pixel

Mr. Dave Clausen 27

Selecting Pattern

and Color

Use the command SetFillStyle for setting the

pattern and color for the object that you wish

to fill.

setfillstyle (pattern, color);

Mr. Dave Clausen 28

Pattern Names
Here are the name of available patterns:

Values Causing filling with

EMPTY_FILL Background Color

SOLID_FILL Solid Color

LINE_FILL Horizontal Lines

LTSLASH_FILL Thin diagonal lines

SLASH_FILL Thick diagonal lines

BKSLASH_FILL Thick diagonal backslashes

LTBKSLASH_FILL Light backslashes

HATCH_FILLThin cross hatching

XHATCH_FILL Thick cross hatching

INTERLEAVE_FILL Interleaving lines

WIDE_DOT_FILL Widely spaced dots

CLOSE_DOT_FILL Closely spaced dots

Mr. Dave Clausen 29

Filling Regions

After selecting a color and pattern,

floodfill is used to fill the desired area.

floodfill (x, y, border_color);

This “paints out” the desired color until it

reaches border color.

Note: The border color must be the same

color as the color used to draw the shape.

Also, you can only fill completely

“closed” shapes.

Program10_4.cpp

Mr. Dave Clausen 30

To draw a filled ellipse:
fillellipse (xcoordinate, ycoordinate, xradius, yradius);

 To draw a filled rectangle:

bar (x1, y1, x2, y2);

To draw a filled 3D rectangle:

bar3d(x1, y1, x2, y2, depth, topflag); //depth is width of

the 3D rectangle, if topflag is non-0 a top is added to the bar

 To draw a filled section of a circle:
pieslice (x, y, startangle, endangle, xradius);

Filling “Special” Regions

Mr. Dave Clausen 31

Text Output on the Graphics Screen

 To write a literal expression on the

graphics screen using the location

specified by (x, y) use the command:

outtextxy (x, y, “literal expression”);

outtextxy (x, y, string_variable);

Note: These are not “apstring” type

strings. They are C++ standard Strings.

Mr. Dave Clausen 32

 To set the values for the text characteristics, use:

settextstyle (font, direction, charsize);
Font Direction

DEFAULT_FONT HORIZ_DIR = Left to right

TRIPLEX_FONT VERT_DIR = Bottom to top

SMALL_FONT

SANS_SERIF_FONT Fonts continued

GOTHIC_FONT COMPLEX_FONT

SCRIPT_FONT EUROPEAN_FONT

SIMPLEX_FONT BOLD_FONT

TRIPLEX_SCR_FONT

Text Styles

Mr. Dave Clausen 33

CharSize

1 = Default (normal)

2 = Double Size

3 = Triple Size

4 = 4 Times the normal

5 = 5 Times the normal

….

10 = 10 Times the normal

Text Styles

Font Sizes

Mr. Dave Clausen 34

 To set the way that text is located

around the point specified use the command:

settextjustify (horizontal,vertical);

Horizontal Vertical

LEFT_TEXT TOP_TEXT

CENTER_TEXT BOTTOM_TEXT

RIGHT_TEXT

Program10_2.cpp

Text Justification

Mr. Dave Clausen 35

Clearing the Screen

 Here is the way to clear the graphics

screen.

 When in graphics mode use:

cleardevice(); //#include <graphics.h>

Mr. Dave Clausen 36

 Returns the height, in pixels, of string S if it

were to be written on the graphics screen

using the current defaults.

textheight (S string);

 Returns the width, in pixels, of string S if it

were to be written on the graphics screen

using the current defaults.

textwidth (S string);

Text

Height & Width

Mr. Dave Clausen 37

Getting a Pixel

 To return the color number corresponding to

the color located at the point: X, Y use the

command:

getpixel (x, y);

Mr. Dave Clausen 38

Useful Non Graphic Commands

 kbhit()

• checks to see if a keystroke is currently

available

• If a keystroke is available, returns a nonzero

integer.

• If a keystroke is not available, returns a zero.

 Any available keystrokes can be retrieved

with getch().

